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What is Stochastic Gradient Descent? |

» Structural Risk Minimization in Machine Learning
» Given samples{(x;, Yl')}?:l and a loss function ((h, y)
» Find a prediction function h (x; w) by minimizing a risk
measure

n

R(W) = 1(h(x;; w),y) = > filw)

» Update w via BGD

n
wkth) = wk) _ e vR (k) = wlk) — thVf,- (wtk)
i=1
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What is Stochastic Gradient Descent? I

» Update w via SGD
wk+D = ) _ ¢, vR (w(k)) = wl) — £, Vf;, (w(k))
» Suppose we want to minimize the sum of functions
m
minY fi(x), i=1,2,...m
i=1

» BGD would sum all the gradients

n
k41 = 5 (k) _ thVfi e e S
i=1
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What is Stochastic Gradient Descent? Il

» SGD instead looks at each gradient individually
xk+) = 50 _ g vf, (x), k=1,2,...

Where ik € {1, ..., m} is some chosen index at iteration k
» Random rule: choose ix € {1, ..., m} uniformly at random
(more commom)
» Circle rule: choose ix=1,2,....,m,1,2,....,m, ...
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Comparison between BGD and SGD
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Figure: The "classic picture"

Gradient computation:
» Batch steps:O (np)

» Doable when n is
moderate, but not when
nx5x108

» Stochastic steps:O (p)

» So clearly, e.g., 10K
stochastic steps are much
more affordable

» Rule of thumb: SGD thrive
far from optimum and
struggle close to optimum
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Comparison between BGD and SGD

» Update w via BGD

» More expensive steps

» Opportunities for parallelism
» Update w via SGD

» Very cheap iteration

» Descent in expectation
» Intuition

» Using all the sample data in every iteration is inefficient
» Data involves a good deal of redundancy in many applications

» Suppose data is 10 copies of a set S.lteration of BGD 10 times
more expensive, while SGD performs same computations

» Sometimes working with half of the training set is sufficient
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Learning Rate Analysis

low learning rate

high learning rate

good learning rate

epoch

Figure: Effects of learning rate on
loss

Figure: An example of a typical loss
func

10/23 Stochastic Gradient Descent AV



Converge Analysis

» Computationally, m stochastic stepsaone batch step
» But what about progress?
» BGD(one step):

m
x4 = X _ £ 3 5f, (x)
i=1
» SGD(Cyclic rule,ix = i,m steps):
m
x(k+m) — 5 (k) _ thfi (X(k+i—1))
i=1
~ Difference in direction is 3,7 | [Vfi (x*k+=1)) — Vf; (x(K)) ]

» So SGD should converge if each Vf;(x) doesn’t vary wildly
with x
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Example

Solution:

» The linear regression loss:
Problem: 9

(yi — wix;)?

.MB
N| =

Il
f}

. . min
. " W
2 ‘ ]

» Update w via BGD:

; wk+1D) — (k) _ tki (W(k)xiz —Yixi)

i
=1

» Update w via SGD:

k
wk+D) — k) 4 ¢ (wfk )Xl.zk T Xikyik)
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Figure: SGD loss-iteration times

Figure: Result of linear regression
via SGD
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Mini-Batch Gradient Descent

» Batch Gradient Descent
m
x*HD = X0 _ 1 3y (x0)
i=1

» Stochastic Gradient Descent
xEHD) = x®) _ v, (x0)

» mini-Batch Gradient Descent

m/

xk+D) = X0 _ 1, SMf, (x0)
i=1
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Challenges

Local Minima
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Convergence
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Figure: Problems with the learning rate Figure: Local Minima
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SGD with momentum
» Accelerate SGD in the relevant direction and dampens
oscillations
» Take a big jump in direction of updated accumulated gradient
» Compute the gradient at the current location
VD = (K 4 sy (x(k))
XK+ = x(K) — (k+D) saD: x(k+D) = x(K) — 5, (x()

f(x) A

Avoiding
Minima

Momentum update

. Smoother
momentum Iteration

step yv

7 (k+1)

actual step

(€9) di K
x gtr:plent Vfik(x( ))
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Nesterov Accelerated Gradient

» Accelerate SGD in the relevant direction and dampens

momentum
step yvk

17/23

oscillations

» Take a big jump in direction of previous accumulated gradient
» Measure gradient where you end up and make a correction

2K = x(K) 4y (K)
Yk+1) = 'yV(k) + tkvfik ()‘((k))

X(H1) 5 (K) _ (k1)

Momentum update
7k

F(k+1)

actual step

x () gradient vf, (x(k))
k

step

SGD with momentum
VD 2 ) 1 v, (x00)
X(K+1) — 5 (k) _ (k1)
Nesterov momentum update

200

vf (A(k)) “lookahead” gradient
k step (bit different than

original)

x(k+1)

momentum
step yvk

actual step

£ ®
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Adaptive Gradient Algorithm

» Adapts the learning rate to the parameters

» Performs larger updates for infrequent
» Performs smaller updates for frequent parameters

» |t is well-suited for dealing with sparse data

SGD: | x**1) = x®) — t, vf, (x®))

2
VD) = ) 4 yf, (x0))

o
XD = 30 _ _—___yf, (x®)

VYD 1 e

€ is a smoothing term that avoids division by zero(usually on the
order of 1e78)
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Adadelta

» Restricts window of accumulated past gradients to fixed size

» Reduce AdaGrad’s aggressive, monotonically decreasing
learning rate
As a fraction 7y similarly to the Momentum term

2
WD _ 00 1 (1 - 1), (x09)

o
X(k+1) — X(k) ] —Vf[k (X(k))

VYD 1 e

Runing Average VX at step k depends only on the previous
average and the current gradient (as a fraction y similarly to the
Momentum term)
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Adaptive Moment Estimation

» Keeps an average of past gradients additionally
» Similar to momentum
» m; and Vv; are biased towards zero

» In the initial time steps as they are initialized as vectors of 0’s
» When the decay rates are small (i.e. 81 and B3 are close to 1)

m®*D = gy m® 4 (1 - B1) vfy, (x©)

2
Vit = g,y 4 (1 - B2) VI, (x9)
my 2 Vit

—, V=
1-pt" ' 1-8

2
ti
v/ Vi+€

bias-corrected first and second moment estimates
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Which optimizer to use?

» You should use one of the adaptive learning-rate methods:
» If input data is sparse.
» For faster convergence and deep or complex neural network
training.
» Insofar, adadelta and adam are very similar algorithms that
do well in similar circumstances.
» Adam slightly outperform adadelta towards the end of
optimization as gradients become sparser.

» Insofar, adam might be the best overall choice.
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Thank you for your time!
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