Stochastic Gradient Descent

Weihang Chen, Xingchen Chen, Jinxiu Liang, Cheng Xu, Zehao Chen and Donglin He

March 26, 2017

Outline

- What is Stochastic Gradient Descent
- Comparison between BGD and SGD
- Analysis on SGD
- Extensions and Variants

What is Stochastic Gradient Descent? I

- Structural Risk Minimization in Machine Learning
 - Given samples $\{(x_i, y_i)\}_{i=1}^n$ and a loss function l(h, y)
 - Find a prediction function h (x; w) by minimizing a risk measure

$$R(w) = \sum_{i=1}^{n} l(h(x_i; w), y_i) = \sum_{i=1}^{n} f_i(w)$$

Update w via BGD

$$w^{(k+1)} = w^{(k)} - t_k \nabla R \left(w^{(k)} \right) = w^{(k)} - t_k \sum_{i=1}^n \nabla f_i \left(w^{(k)} \right)$$

What is Stochastic Gradient Descent? II

Update w via SGD

$$w^{(k+1)} = w^{(k)} - t_k \nabla R(w^{(k)}) = w^{(k)} - t_k \nabla f_{i_k}(w^{(k)})$$

Suppose we want to minimize the sum of functions

$$min \sum_{i=1}^{m} f_i(x), i = 1, 2, ..., m$$

BGD would sum all the gradients

$$x^{(k+1)} = x^{(k)} - t_k \sum_{i=1}^{n} \nabla f_i(x^{(k)}), k = 1, 2, ...$$

What is Stochastic Gradient Descent? III

SGD instead looks at each gradient individually

$$x^{(k+1)} = x^{(k)} - t_k \nabla f_{i_k}(x^{(k)}), k = 1, 2, ...$$

Where $i_k \in \{1, ..., m\}$ is some chosen index at iteration k

- ► Random rule: choose $i_k \in \{1, ..., m\}$ uniformly at random (more commom)
- Circle rule: choose $i_k = 1, 2, ..., m, 1, 2, ..., m, ...$

Comparison between BGD and SGD

Figure: The "classic picture"

Gradient computation:

- Batch steps:O(np)
 - Doable when n is moderate, but not when n ≈ 5 × 10⁸
- Stochastic steps:O(p)
 - So clearly, e.g., 10K stochastic steps are much more affordable
- Rule of thumb: SGD thrive far from optimum and struggle close to optimum

Comparison between BGD and SGD

- Update w via BGD
 - More expensive steps
 - Opportunities for parallelism
- Update w via SGD
 - Very cheap iteration
 - Descent in expectation
- Intuition
 - Using all the sample data in every iteration is inefficient
 - Data involves a good deal of redundancy in many applications
 - Suppose data is 10 copies of a set S.Iteration of BGD 10 times more expensive, while SGD performs same computations
 - Sometimes working with half of the training set is sufficient

Learning Rate Analysis

Figure: Effects of learning rate on loss

Figure: An example of a typical loss func

Converge Analysis

- Computationally, m stochastic steps≈one batch step
- But what about progress?
 - BGD(one step):

$$x^{(k+1)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i \left(x^{(k)} \right)$$

► SGD(Cyclic rule, $i_k = i,m$ steps):

$$x^{(k+m)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i \left(x^{(k+i-1)} \right)$$

- ▶ Difference in direction is $\sum_{i=1}^{m} \left[\nabla f_i \left(x^{(k+i-1)} \right) \nabla f_i \left(x^{(k)} \right) \right]$
- So SGD should converge if each $\nabla f_i(x)$ doesn't vary wildly with x

Example

Problem:

Solution:

The linear regression loss:

$$\min_{w} \sum_{i=1}^{m} \frac{1}{2} (y_i - w_i x_i)^2$$

Update w via BGD:

$$w^{(k+1)} = w^{(k)} - t_k \sum_{i=1}^{m} \left(w_i^{(k)} x_i^2 - y_i x_i \right)$$

Update w via SGD:

$$w^{(k+1)} = w^{(k)} + t_k \left(w_{i_k}^{(k)} x_{i_k}^2 - x_{i_k} y_{i_k} \right)$$

Example

Figure: SGD loss-iteration times

Figure: Result of linear regression via SGD

Mini-Batch Gradient Descent

Batch Gradient Descent

$$x^{(k+1)} = x^{(k)} - t_k \sum_{i=1}^{m} \nabla f_i \left(x^{(k)} \right)$$

Stochastic Gradient Descent

$$x^{(k+1)} = x^{(k)} - t_k \nabla f_{i_k} (x^{(k)})$$

mini-Batch Gradient Descent

$$x^{(k+1)} = x^{(k)} - t_k \sum_{i=1}^{m'} \nabla f_{i_k} \left(x^{(k)} \right)$$

Challenges

Figure: Problems with the learning rate

Figure: Local Minima

SGD with momentum

- Accelerate SGD in the relevant direction and dampens oscillations
 - Take a big jump in direction of updated accumulated gradient
 - Compute the gradient at the current location

Nesterov Accelerated Gradient

- Accelerate SGD in the relevant direction and dampens oscillations
 - Take a big jump in direction of previous accumulated gradient
 - Measure gradient where you end up and make a correction

$$\begin{split} \hat{\chi}^{(k)} &= \chi^{(k)} + \gamma \nu^{(k)} \\ & \nu^{(k+1)} &= \gamma \nu^{(k)} + t_k \nabla f_{i_k} \left(\hat{\chi}^{(k)} \right) \\ & \chi^{(k+1)} &= \chi^{(k)} - \nu^{(k+1)} \\ & \chi^{(k+1)} &= \chi^{(k)} - \nu^{(k+1)} \\ \end{split}$$

Adaptive Gradient Algorithm

- Adapts the learning rate to the parameters
 - Performs larger updates for infrequent
 - Performs smaller updates for frequent parameters
- It is well-suited for dealing with sparse data

SGD:
$$x^{(k+1)} = x^{(k)} - t_k \nabla f_{i_k} (x^{(k)})$$

$$v^{(k+1)} = v^{(k)} + \nabla f_{i_k} (x^{(k)})^2$$

$$x^{(k+1)} = x^{(k)} - \frac{\alpha}{\sqrt{v^{(k+1)} + \epsilon}} \nabla f_{i_k} (x^{(k)})$$

 ϵ is a smoothing term that avoids division by zero(usually on the order of $1e^{-8}$)

Adadelta

- Restricts window of accumulated past gradients to fixed size
 - Reduce AdaGrad's aggressive, monotonically decreasing learning rate

As a fraction γ similarly to the Momentum term

$$\nu^{(k+1)} = \gamma \nu^{(k)} + (1 - \gamma) \nabla f_{i_k} (x^{(k)})^2$$
$$x^{(k+1)} = x^{(k)} - \frac{\alpha}{\sqrt{\nu^{(k+1)} + \epsilon}} \nabla f_{i_k} (x^{(k)})$$

Runing Average v^k at step k depends only on the previous average and the current gradient (as a fraction γ similarly to the Momentum term)

Adaptive Moment Estimation

- Keeps an average of past gradients additionally
 - Similar to momentum
- $ightharpoonup m_t$ and v_t are biased towards zero
 - In the initial time steps as they are initialized as vectors of 0's
 - ▶ When the decay rates are small (i.e. β_1 and β_2 are close to 1)

$$m^{(k+1)} = \beta_1 m^{(k)} + (1 - \beta_1) \nabla f_{i_k} (x^{(k)})$$

$$\nu^{(k+1)} = \beta_2 \nu^{(k)} + (1 - \beta_2) \nabla f_{i_k} (x^{(k)})^2$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \ \hat{\nu}_t = \frac{\nu_t}{1 - \beta_2^t}$$

$$x^{(k+1)} = x^{(k)} - \frac{t_k}{\sqrt{\hat{\nu}_t + \epsilon}} \hat{m}_t$$

bias-corrected first and second moment estimates

Which optimizer to use?

- You should use one of the adaptive learning-rate methods:
 - If input data is sparse.
 - For faster convergence and deep or complex neural network training.
- Insofar, adadelta and adam are very similar algorithms that do well in similar circumstances.
- Adam slightly outperform adadelta towards the end of optimization as gradients become sparser.
- Insofar, adam might be the best overall choice.

Reference

- Hongmin Cai(2016): Sub-gradient Method, Lecture 7
- Cnblogs Murongxixi(2013): Stochastic Gradient Descent
- Leon Bottou(2016): Optimization Methods for Large-Scale
 Machine Learning
- Abdelkrim Bennar(2007): Almost sure convergence of a stochastic approximation process in a convex set
- A. Shapiro, Y. Wardi(1996): Convergence Analysis of Gradient Descent Stochastic Algorithms
- Wikipedia: Stochastic gradient descent
- Sebastian Ruder (2016): An overview of gradient descent optimization algorithms
- Zhihua Zhou(2016): Machine Learning, Chapter 6

Thank you for your time!